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1.0 INTRODUCTION

The Advanced Medium-Range Air-to-Air Missile (AMRAAM), shown in Figure 1, often encounters
a severe aerodynamic environment during external carriage on fighter aircraft. This environment
is especially harsh for missiles located close to an engine inlet during a high angle of attack
maneuver which involves a throttle chop. In such a case, inlet corner vortices are known to "spill”
out of the inlet (forming a "horseshoe” vortex). The vortex map at the plane of the engine inlet is
depicted in Figure 2. Concern over the ability to predict missile response in such conditions has
spawned research on the prediction of the associated aerodynamics. Companion research etforts
include the development of instrumented missiles to measure in-flight pressures [1] and efforts to
determine the response of tactical missiles [2].

In the late 1980s, an AMRAAM was modified to serve as a digital measurement vehicle (DMV) by
personnel from the Structural Dynamics Branch, Structures Division of Wright Laboratory's Flight
Dynamics Directorate (WL/FIBG at that time). Mr. Richard "Dick" Talmadge was the program
manager. The DMV was fitted with accelerometers and pressure transducers, then flown in a
number of flight tests to determine if the digital technology and a newly developed miniature tape
recorder could be shown to be preferable to the analog system flown earlier.

The pressure transducers were located at the stations and locations indicated in Figure 3. The intent
was to provide pressure measurements at three nearly equally spaced positions around the missile
at the five selected longitudinal stations. However, the location of structures within the missile
limited the available locations. The pressure transducers used were flush-mounted "Kulites."

After the flight tests were flown, an analytical effort was begun to determine it the aerodynamic
environment could be characterized to the extent that structural responses could be predicted from
the measured pressure excitations [2]. The basis for measuring success was a direct comparison
with the measured accelerations. Unfortunately, the level of success was not as expected, prompting
the effort reported here. The major problem with the earlier study was that no clear physical model
of the aerodynamics was available, and a somewhat "brute force" method of applying loads was
attempted. Another problem was that there was some uncertainty in the modelling of the elasticity
of the connections between the missile and the launcher in the earlier study. An on-going analysis
takes into account the improved aerodynamic load modelling reported here as well as more realistic
modelling of the missile support conditions.

2.0 RECORDED DATA

The DMV was flown for a number of flights on the F-15 LAU-106 ejector launcher mounted at
(forward fuselage) station number 7. The PCM data from the DMV tape recorder were digitized
and calibrated by Mr. Dansen Brown of the Data Analysis Group. Under the sponsorship of Major
Kevin Dougherty of the AMRAAM program office (ASC/YAJ, Eglin AFB) two sets of data were




made available to the authors. The flight condition selected for analysis is from flight I-1157-88,
flown on 10 December 1990, at Eglin AFB, Florida.

Flight point 7 was a "wind-up turn" with a throttle chop, beginning at flight time 20:31:55.00. The
conditions were:

Mach number 0.89
altitude 20.1 K feet
dynamic pressure 537.0
angle of attack 8.6 degrees

The pressure-time histories for flight point 7 are given in Appendix A. Auto-power spectral
densities are given in Appendix B.

3.0 ANALYSIS
3.1 Analysis Using Amplitude Statistics of the Excitation

A very simplistic way to look at the recorded data is to simply calculate statistical measures of the
excitation across the missile. Without knowing the nature of the pressure field a priori, it may be
true that the number of pressure transducers required to characterize the pressure field well enough
for structural analysis is much larger than available on the DMV. Without a comparative
measurement density study, however, there is no way to know. In this study, the approach is taken
that one plausible way to characterize the excitation is to fit polynomial curves through
measurement levels around the missile and along the missile in order to see if any identifiable
patterns emerge. Further, rather than fitting curves through pressures at instants in time (a most
exhaustive pursuit), the curves were fit through the means and standard deviations of the excitation
pressures. The idea is that flow "structures” in the excitation would emerge from these measures
if they were strong aerodynamic structures. It was expected at the outset that regions on the missile
experiencing large standard deviations of excitation would be "bathed" by inlet vortices, while
relatively quiet regions were not. The presence of such "excitation segregation,” then would
indicate a steady vortex, such as the "horseshoe" vortex known to often spill out of a rectangular
engine inlet.

Two types of means and standard deviations have been computed. First, using an ensemble of
40,000 pressure measurements, 40 time slices of 1000 records were used to compute the standard
deviations and means at each of the measurement locations. A set of 5th degree polynomial curves
were then fit through the 3 computed values at each missile station. This results in a set of 5
curvefits each for standard deviation and mean depicting the distribution of pressure around the
missile at a given missile station. These distributions are shown as carpet plots in Figures 4 and 8.
Note that the distribution of standard deviation seems to have more structure and much higher
magnitude than the mean. The distribution of standard deviation and mean around the missile for
the 40th time slice is given in Figures 5 and 9 in both linear and polar form. From these plots, it
was hoped that an identifiable "swirl" would be apparent, for instance a clear direction of rotation




which is proportional to the distance along the missile. However, this is difficult to substantiate at
this time. On the other hand, it is noted that the magnitude of the standard deviation at stations 32
and 66 are nearly twice that at 16 and 90, and a clockwise flow (looking aft) may be indicated.

The second type of computations were the calculation of running standard deviation and mean. For
instance, the 17th set of curvefits represented the standard deviation and mean of the first 17,000
measurements (17 time slices times 1000 measurements per time slice). Carpet plots are given in
Figures 6 and 10. Figures 7 and 11 give the distribution of standard deviation and mean for the
whole ensemble of data.

3.2 Analysis Using Phase Relationships of the Excitation

The knowledge that the AMRAAM often experiences severe "wash" from engine air "dumping"
during a throttle chop suggests that significant acrodynamic disturbances are "convected" along the
missile at a speed near the flight speed of the aircraft. Therefore, from the missile point of view, the
narrow-band random excitation is very much temporally correlated. That is, a force or collection
of forces arriving at a downstream point is just a time-delayed version of what an upstream point
already experienced. If the excitation also swirls, as in a shed vortex, the convection can be along
a helical rather than a lineal path. A straightforward way to identify a convected, or spatially
correlated, excitation is to observe the temporal correlation function relating two pressures or the
phase relationship in their cross power spectrum. The theory of this concept will now be presented
based on the excellent text by Bendat and Pearsol [3].

When a single force moves at a constant velocity across the boundary of a structure, it will be
recorded at discrete measurement locations with an arrival time varying in direct proportion to the
distance between the points (and inversely proportional to the velocity). In other words there is a
delay, with respect to an "upstream" recording location, in the arrival time for a "downstream"

t=d/c 1)

recording location. The calculation of the temporal delay is very simply calculated as:
where d is the distance between a reference point "upstream” from a disturbance (force) moving
toward a point of interest, and c is the velocity with which it moves.

The delay in arrival of an excitation at one point with respect to another results in a couple of
interesting relationships. Consider first, the cross-correlation function between two functions, x(t)
and y(t), defined by:

lim 1 fo Tx(t)y(t+'r)dt (2)

R ‘f(‘t) = T"N?"

Here T is the time period over which the function is calculated. Now consider the cross-power




spectral densities of the two signals discussed above. The cross-power spectral density is:
S,0=[ R@e " d 3)
Here f is the frequency. Finally, the phase angle in terms of a time delay is given by:

0=2xft 4)

To summarize, then, the correlation between two measurement locations subject to a force moving
past them both can be described in terms of a delay in the time domain or a phase change in the
frequency domain.

Figures 12-20 show the phase of the cross power spectral density of nine measurement pairs near
the front of the DMV, namely:

sensor 2 and sensors 35, 6 and 7
sensor 5 and sensors 9, 10 and 11
sensor 2 and sensors 9, 10 and 11

Note the nearly linearly varying phase angle in the cross-power spectral density in the 200 to 500
Hz frequency range for most measurement pairs. This is exactly what is expected according to
theory. Moreover, the "slope" of the phase change is generally in agreement with theory, that is,
that the measurement locations furthest apart have the greatest rate of phase angle change (because
the time delay is greater). The analysis of this data is on-going, with the hope that computational
fluid dynamics (CFD) analysis will be able to shed light on the presence of vortex structures in the
vicinity of the engine inlet.

4.0 CONCLUSION AND RECOMMENDATIONS

The presence of temporal correlation in the flow past a missile near an engine inlet consistent with
swirling convection has been identified by analysis of measured pressures on a missile. The
demonstration was based on both cross-power spectra phase shift analysis (for the convection) and
on statistical analysis of curvefitted measurements (for the swirl).

Cooperative research with CFD analysts is clearly indicated if a better view of flow near an engine
inlet is to be realized. Also, measurement programs with a more dense pressure transducer network
may be necessary. Recent advances in the miniaturization of flight-quality measurement systems
makes this entirely feasible.
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XPSD Phase Pt7_pSp2, 2048 records, 90% overlap
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Figure 16. Phase of pressure cross-PSDs relating measurement points 9, 10 & 11 to 2.
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Figure 17. Phase of pressure cross-PSDs relating measurement points 9,10 & 11 to 3.
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Figure 18. Phase of pressure cross-PSDs relating measurement points 9, 10 & 11 to 5.
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XPSD Phase Pt7_p9p6, 2048 records, 90% overlap
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Figure 19. Phase of pressure cross-PSDs relating measurement points 9,10 & 11 to 6.
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XPSD Phase Pt7_p9p7, 2048 records, 90% overlap
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Figure 20. Phase of pressure cross-PSDs relating measurement points 9, 10 & 11 to 7.
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Appendix A
Pressure Time Histories

Each plot in this appendix is a pressure (psi) versus time (sec) record. The label
for each plot is of the form "Pt7_pi", where the i indicates the measurement point
as shown in Figure 3. [Therefore, i ranges from 1 to 17, excluding 4 and 8.]
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Appendix B
Pressure Auto-PSDs

Each plot in this appendix is an auto-power spectral density. The label for each
plot is of the form "Pt7_pi", where the / indicates the measurement point as shown

in Figure 3. [Therefore, i ranges from 1 to 17, excluding 4 and 8.]
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